Ⅰ 基础埋置深度
5.2.1 膨胀土地基上建筑物的基础埋置深度,应综合下列条件确定:
式中:d——基础埋置深度(m);
5.2.5 基础底面压力应符合下列规定:
式中:pk——相应于荷载效应标准组合时,基础底面处的平均压力值(kPa);
式中:pkmax——相应于荷载效应标准组合时,基础底面边缘的最大压力值(kPa)。
式中:fak——地基承载力特征值(kPa),按本规范第4.3.7条的规定确定; Ⅲ 变形计算
5.2.7 膨胀土地基变形量,可按下列变形特征分别计算:
式中:
5.2.9 地基土的收缩变形量应按下式计算:
式中:
图5.2.9 地基土收缩变形计算含水量变化示意 5.2.10 收缩变形计算深度内各土层的含水量变化值(图 5.2.9),应按下列公式计算。地表下4m深度内存在不透水基岩时,可假定含水量变化值为常数[图5.2.9(b)]:
式中: 5.2.11 土的湿度系数应根据当地10年以上土的含水量变化确定,无资料时,可根据当地有关气象资料按下式计算:
式中:α——当地9月至次年2月的月份蒸发力之和与全年蒸发力之比值(月平均气温小于0℃的月份不统计在内)。我国部分地区蒸发力及降水量的参考值可按本规范附录H取值;
c——全年中干燥度大于1.0且月平均气温大于0℃月份的蒸发力与降水量差值之总和(mm),干燥度为蒸发力与降水量之比值。
表5.2.12 大气影响深度(m)
5.2.13 大气影响急剧层深度,可按本规范表5.2.12中的大气影响深度值乘以0.45采用。
式中:
表5.2.16 膨胀土地基上建筑物地基变形允许值 注:l为相邻柱基的中心距离(m)。 Ⅳ 稳定性计算
5.2.17 位于坡地场地上的建筑物地基稳定性,应按下列规定进行验算: 条文说明
Ⅰ 基础埋置深度
5.2.1 膨胀土上建筑物的基础埋深除满足建筑的结构类型、基础形式和用途以及设备设施等要求外,尚应考虑膨胀土的地质特征和胀缩等级对结构安全的影响。 Ⅱ 承载力计算 5.2.6 鉴于膨胀土中发育着不同方向的众多裂隙,有时还存在薄的软弱夹层,特别是吸水膨胀后土的抗剪强度指标C、φ值呈较大幅度降低的特性,膨胀土地基承载力的修正不考虑基础宽度的影响,而深度修正系数取1.0。如原苏联学者索洛昌用天然含水量为32%~37%的膨胀土在无荷条件下浸水膨胀稳定后进行快剪试验,Ф值由14°降为7°,降低了50%;C值由67kPa降为15kPa,降低了78%。我国学者廖济川用天然含水量为28%的滑坡后土样进行先干缩后浸水的快剪及固结快剪试验,其C、Ф值都减少了50%以上。 Ⅲ 变形计算 5.2.7 对全国膨胀土地区7个省中167栋不同场地条件有代表性的房屋和构筑物(其中包括23栋新建试验房)进行了(4~10)年的竖向和水平位移、墙体裂缝、室内外不同深度的土体变形和含水量、地温以及树木影响的观测工作,对158栋较完整的资料进行统计分析表明,由于各地场地、气候和覆盖等条件的不同,膨胀土地基的竖向变形特征可分为上升型、下降型和升降循环波动型三种,如图8所示。
表5是我国膨胀土地区155栋有代表性的房屋长期竖向位移观测结果的统计。
表5 膨胀土上房屋位移统计
上升型位移是由于房屋建成后地基土吸水膨胀产生变形,导致房屋持续多年的上升,如图8中的曲线1。例如:河南平顶山市一栋平房建于1975年的旱季,房屋各点均持续上升,到1979年上升量达到45mm。应当指出,房屋各处的上升是不均匀的,且随季节波动,这种不均匀变形达到一定程度,就会导致房屋开裂破坏。产生上升型位移的主要原因如下:
表6 各地气候与房屋位移
下降型常出现在土的天然含水量较高(例如大于1.2ωp)或建筑物靠近边坡地带,如图8中的曲线3。在平坦场地,房屋下降位移主要是土中水分减少,地基产生收缩变形的结果。土中水分减少,可能是气候干旱,水分大量蒸发的结果,也可能是局部热源或蒸腾量大的种木(如桉树)大量吸取土中水分的结果。至于临坡建筑物,位移持续下降,一方面是坡体临空面大于平地,土中水分更容易蒸发而导致较平坦场地更大的收缩变形。另一方面,坡体向外侧移而产生的竖向变形(即剪应变引起),这种在三向应力条件下侧向位移引起的竖向变形是不可逆的。湖北郧县膨胀土边坡观测中就发现了上述状况,它的发展必然导致坡体滑动。上述下降收缩变形量的计算是指土体失水收缩而引起的竖向下沉,在设计中应避免后一种情况的发生。
图9是按
表7 膨胀量(浸水部分)计算的经验系数
图9 计算膨胀量与实测膨胀量的比较
5.2.9 失水收缩是膨胀土的另一属性。收缩变形量的大小取决于土的成分、密度和初始含水量。
表8 同质土的线缩率
2) 收缩变形量主要取决于土体本身的收缩性能以及含水量变化幅度,表9和图12为不同质土的线缩率
表9 不同质土的线缩率
3) 土失水收缩与外部荷载作用下的固结压密变形是同向的变形,都是孔隙比减少、密度增大的结果。但两者有根本性的区别:失水收缩主要是土的黏粒周围薄膜水或晶格水大量散失的结果;固结压密变形是在荷重的作用下土颗粒移动重新排列的结果(特别是非饱和土,在一般压力下并无固结排水现象)。由收缩产生的内应力要比固结压密产生的内应力大得多。虽然实际工程中膨胀土的失水收缩和荷载作用下的压缩沉降变形难于分开,但在试验室内可有意识地将两种性质不同的变形区别开来。
5) 关于收缩变形计算的经验系数
表10 收缩量计算的经验系数
6) 计算收缩变形量的公式是一个通式,其中最困难的是含水量变化值,应根据引起水分减少的主要因素确定。局部热源及树木蒸腾很难采用计算来确定其收缩变形量。
表11 某地20年蒸发力和降水量月平均值 表11中由于实际蒸发量尚难全面科学测定,中国气象局按彭曼(H.L.Penman)公式换算出蒸发力。经证实,实用效果较好。公式包括日照、气温、辐射平衡、相对湿度、风速等气象要素。
表12 干燥度大于1的月份的蒸发力和降水量 2)计算过程见表13。
表13 湿度系数
由表13可知,算例湿度系数
含水量年变化幅度Δω(%)
5.2.14 室内土样在一定压力下的干湿循环试验与实际建筑的胀缩波动变形的观测资料表明:膨胀土吸水膨胀和失水收缩变形的可逆性是其一种重要的属性。其胀缩变形的幅度同样取决于压力和初始含水量的大小。因此,膨胀土胀缩变形量的大小也完全可通过室内试验获得的特性指标
表14 土的室内试验指标
2) 将基础埋深d至计算深度
3) 求出各分层的平均总压力
表15中基础长度为L(mm),基础宽度为b(mm)。
5) 由本规范式(5.2.14),求得地基胀缩变形总量为:
5.2.16 通过对55栋新建房屋位移观测资料的统计,并结合国外有关资料的分析,得出表5.2.16有关膨胀土上建筑物地基变形值的允许值。上述55栋房屋有的在结构上采取了诸如设置钢筋混凝土圈梁(或配筋砌体)、构造柱等加强措施,其结果按不同状况分述如下:
表17 砖石承重结构的变形量
从46栋砖石承重结构的变形量可以看出:29栋完好房屋中,变形量小于10mm的占其总数的58.62%;小于20mm的占其总数的79.31%。17栋损坏房屋中,88.24%的房屋变形量大于10mm。
表19 承重墙设圈梁或配筋的砖砌体
3) 钢筋混凝土排架结构
表20 钢筋混凝土排架结构
机修车间1979年6月外纵墙开裂时的最大变形量为27.5mm,相邻两柱间的变形差为0.0025l。到1981年12月最大变形量达41.3mm,变形差达0.003l。究其原因,归咎于附近一棵大桉树的吸水蒸腾作用,引起地基土收缩下沉。从而导致墙体开裂。但主体结构并未损坏。 Ⅳ 稳定性计算 5.2.17 根据目前获得的大量工程实践资料,虽然膨胀土具有自身的工程特性,但在比较均匀或其他条件无明显差异的情况下,其滑面形态基本上属于圆弧形,可以按一般均质土体的圆弧滑动法验算其稳定性。当膨胀土中存在相对软弱的夹层时,地基的失稳往往沿此面首先滑动,因此将此面作为控制性验算面。层状构造土系指两类不同土层相间成韵律的沉积物、具有明显层状构造特征的土。由于层状构造土的层状特性,表现在其空间分布上的不均匀性、物理性指标的差异性、力学性指标的离散性、设计参数的不确定性等方面使土的各向异性特征更加突出。因此,其特性基本控制了场地的稳定性。当层面与坡面斜交的交角大于45°时,稳定性由层状构造土的自身特性所控制,小于45°时,由土层间特性差异形成相对软弱带所控制。 |
Powered by Discuz! X3.5
© 2001-2025 Discuz! Team.