5.4.1 去除污水中分散油、乳化油和悬浮物宜采用气浮处理。
式中:q1——溶气罐所需空气量(m3/h);
表5.4.3 不同温度下的溶解系数 4 供气量宜按下式计算: Q1=φ·n·q1 (5.4.3-2)
式中:Q1——供气量(m3/h); 条文说明
5.4.1 气浮法适用于去除污水中相对密度接近1的杂质。污水中的细分散油、乳化油不能通过隔油去除,细小悬浮物不能通过沉淀方法去除时,气浮是有效的处理手段。
5.4.2 气浮法的常用工艺有部分污水回流加压溶气、全部污水加压溶气、部分污水加压溶气、叶轮气浮等,其中部分污水回流加压溶气气浮投药量少,节能,处理效果较好,宜优先采用。根据化工污水处理设计经验,部分污水回流加压溶气气浮的回流比可取25%~50%。 5.4.3 对加压溶气气浮溶气罐设计计算的规定。 压力溶气罐是溶气气浮的关键设备,影响溶气效果因素较多,除水温、溶气压力外,还与溶气罐形式和溶气时间有关。为了防止溶气罐的短流,增大紊流,促进水气充分接触,加快气体扩散,罐内常设隔板、筛板、填料。国内多采用阶梯环填料喷淋式溶气罐,根据有关资料,填料层高1.0m,水温10℃~30℃,溶气压力0.3MPa~0.5MPa时,溶气效率达80%甚至90%以上。 溶气罐所需溶解空气量按亨利公式进行计算。溶气罐的直径(D)一般按罐单位截面积水力负荷计算。对填料罐一般取100m3/(m2·h)~200m3/(m2·h),采用阶梯环时填料层高度可取1m~1.3m,储水区高度一般为1.0m,布水区高度一般为0.2m~0.3m。罐体总高度(Z)按罐顶、底封头高度、布水区高度、填料层高度及储水区高度之和确定。溶气罐高径比(Z/D)2.5~4。 5.4.4 加压溶气气浮大多设溶气释放器,但处理悬浮杂质较多的污水易堵塞,据调查也有不设溶气释放器的,采用减压阀和穿孔管,宜根据水质确定。 5.4.5 气浮池一般为矩形或圆形,即平流式或竖流式,气浮池的设计主要是确定容积和池表面积,使微气泡群与水中油粒和絮凝体能充分混合接触,黏附上浮,与污水分离。 气浮池的形式应从前后处理构筑物衔接、施工难易程度、工程造价等方面综合确定。矩形气浮池便于与污水的加药混合反应池合建,施工方便,采用较多。 气浮池由接触室和分离室组成,接触室与分离室用隔板(墙)分开,隔板(墙)顶与气浮池水面的高度(扣除浮渣层最大高度100mm~200mm)为堰上水深。水流过堰流速应不大于接触室上升流速。 5.4.6 散气气浮分扩散板曝气气浮法和叶轮曝气气浮法两种,通常多采用叶轮气浮。与加压溶气气浮相比,叶轮气浮不需要溶气罐、空压机、回流泵,设备简单,节能明显,近年得到广泛应用,但也有资料介绍,由于叶轮气浮产生的气泡较大,不易与细小颗粒和絮体相黏附,反而易将絮体打碎,因此较适合于稠油污水处理,在石化企业常用于一级气浮。基于上述原因,采用叶轮气浮时应根据水质和处理要求,并参照同类污水处理经验选择成套产品。 5.4.7 气浮处理应加药,主要是改善微细气泡与杂质黏附条件,提高气浮效果。投药的混合反应时间,根据经验宜5min~10min。为避免打碎絮体,进入气浮接触室的流速控制在0.1m/s~0.2m/s为宜。 5.4.8 气浮池是连续运行的设施,为保证设备事故或检修时能部分运行,气浮池不应少于2格(池)。 5.4.9 气浮池表面易散发可燃气体、有毒害气体,因此气浮池不宜敞口,宜设非燃烧材料盖板,并宜设置引风设施。 |
Powered by Discuz! X3.5
© 2001-2025 Discuz! Team.